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Abstract9

The limited availability of soil information has been recognized as a main10

limiting factor in Digital Soil mapping (DSM) studies. It is therefore impor-11

tant to optimize the joint use of the three sources of soil data that can be12

used as inputs of DSM models, namely spatial sets of measured sites, soil13

maps and soil sensing products.14

In this paper, we propose to combine these three inputs, through a cok-15

riging with a categorical external drift (CKCED). This new interpolation16

technique was applied for mapping seven soil properties over a 24.6 km2
17

area located in the vineyard plain of Languedoc (Southern France), using18

an hyperspectral imagery product as example of a soil sensing data. Cross-19

validation results of CKCED were compared with those of five spatial and20

non-spatial techniques using one of these inputs or a combination of two of21

them.22

The results obtained in the La Peyne Catchment showed i) the utility of23

soil map and hyperspectral imagery products as auxiliary data for improving24

soil property predictions ii) the greater added-value of the latter against the25

former in most situations and iii) the feasibility and the interest of CKCED in26

a limited number of soil properties and data configurations. Testing CKCED27

in case study with soil maps of better quality and soil sensing techniques28

covering more area and depths should be necessary to better evaluate the29

benefits of this new technique.30
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validation, soil map, soil properties33

1. Introduction34

Given the relative lack of, and the huge demand for, quantitative spatial35

soil information to be used in environmental managing and modelling, digital36

soil mapping (DSM) has been proposed as an alternative to the classical soil37

surveys for the quantitative mapping of soil properties over regions at inter-38

mediate (20-200m) spatial resolutions (McBratney et al., 2003). McBratney39

et al. (2003) proposed the equation S = f(s,c,o,r,p,a,n) for summarizing the40

general principle of DSM. According to this equation, a soil property (S) can41

be predicted by a spatial inference function (f) using, as input, the existing42

soil information (s), the spatial covariates that map the different factors of43

soil formation early defined by Jenny (1941) (c,o,r,p,a,) and the geograph-44

ical location (n) that can highlight any spatial trends missed by the other45

covariates.46

It has been early stressed that the limited availability of the soil infor-47

mation (the s component) was a severe limiting factor in DSM applications48

(Lagacherie, 2008). Up to now, most of the soil information used as input in49

DSM for mapping soil properties has been either soil maps or spatial sam-50

pling of sites with measured soil properties. When available under the form51

of soil databases (Rossiter, 2004), the former may provide estimates of soil52

properties over larger areas with however limited spatial resolutions and ac-53

curacy (Marsman and de Gruijter, 1986, Leenhardt et al., 1995, Odgers et54

al., 2012). Pedometricians have developed a large range of algorithms for ex-55

ploiting spatial sampling of sites for mapping soil properties, using sites with56

measured soil properties combined with spatial covariates (Oliver and Web-57

ster, 1989). Recent operational applications of DSM are converging toward58

the use of regression kriging (Malone et al., 2009; Hengl et al., 2015) in which59

the two sources of soil data are used together, soil map as a soil covariate60

among others and spatial sampling with measured soil properties as input61

data for calibration of the regression model and for spatial interpolation of62

the regression residuals. However, in situations of sparse spatial sampling63

that often occurs in operational DSM, the performances of the regression64

kriging remain severely limited (Vaysse and Lagacherie, 2015).65

The spatial estimations of soil properties produced by Soil Sensing are a66

third type of soil information that may be considered also as a DSM input67
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that may mitigate the dearth in soil data. A growing number of sensors is68

now available for producing very high resolution (< 5 m) images of estimated69

soil properties, either by field-based (or proximal) soil sensing techniques70

(Adamchuk and Rossel, 2011, Mouazen et al, 2007) or by airborne sensing71

techniques (Selige, 2006; Stevens et al, 2008; Gomez et al, 2008). However,72

these soil sensing products are most often available over uncompleted and73

scattered areas because of their high costs and of their limited conditions of74

application. This prevents from using them as soil covariates in a classical75

regression kriging approach. As an alternative for mapping soil properties76

over a region with soil sensing products, we proposed a co-kriging approach77

(Lagacherie et al, 2012) that combined such input with a spatial sampling of78

measured sites. By taking hyperspectral-based estimations of clay content79

over a limited set of fields with bare surfaces as an example of soil sensing in-80

put, we showed that soil sensing could bring a significant increase of accuracy81

of clay content predictions over a whole region.82

In this paper, we went a step further by developing and testing a new krig-83

ing approach, namely cokriging with a categorical external drift (CKCED),84

which combines the three possible soil inputs - soil map, spatial sampling85

of measured sites and soil sensing products -. This approach was compared86

with spatial and non-spatial techniques using one of these inputs or a com-87

bination of two of them. The comparisons were performed for seven soil88

properties (Clay, silt, sand, Calcium Carbonate, pH, Total Iron and CEC)89

mapped over a 24.6 km2 area located in the vineyard plain of Languedoc90

(Southern France).91

2. Case study92

2.1. Study area93

The study was carried out in the La Peyne catchment (Figure 1) in the94

South of France 43o9′0′′N and 3o2′0′′ E. Vineyards form the primary land95

use in the area. Marl, limestone and calcareous sandstones from Miocene96

marine and lacustrine sediments formed the parent material of several soil97

types observed in this area, including Lithic Leptosols, Calcaric Regosols and98

Calcaric Cambisols (WRB soil classification, ISSS-ISRIC-FAO, 1998). These99

sediments were partly covered by successive alluvial deposits ranging from the100

Pliocene to Holocene and differed in their initial nature and in the duration101

of weathering conditions. These sediments have produced an intricate soil102

pattern that includes a large range of soil types, such as Calcaric, Chromic103
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and Eutric Cambisols, Chromic and Eutric Luvisols and Eutric Fluvisols104

(Coulouma et al 2008). The local transport of colluvial material along the105

slopes has added to the complexity of the soil patterns. An earlier ground106

sampling made in the study region (Lagacherie et al., 2008) showed that these107

complex soil patterns correspond to a great variability of clay content at the108

soil surface (from 65 g.kg−1 to 452 g.kg−1 ). A study area of 24.6km2 (Figure109

1) was defined by intersecting this region of interest with the hyperspectral110

image used in this study.111

2.2. Data112

2.2.1. Spatial sampling of measured sites113

143 sites (average sampling density of 1 site / 17 ha) were sampled in the114

study area for measurements of soil properties. All of these samples were115

composed of five sub-samples collected to a depth of 5 cm for representing a116

5 meters x 5 meters square. The geographical position at the centre of this117

square was recorded by a decimetric GPS instrument. After homogenization118

of the sample, and removal of plant debris and stones, sieving and air dry-119

ing, about 20 g was devoted to soil properties laboratory analysis. Seven120

soil properties for which previous estimations from hyperspectral data were121

attempted (Gomez et al, 2012a) were determined using classical physico-122

chemical soil analysis (Baize, 1988): calcium carbonate content (CaCO3),123

clay content (granulometric fraction ≺ 2 µm), silt content (granulometric124

fraction between 2 to 50 µm), sand content (granulometric fraction between125

0,05 and 2mm), free iron content, cation-exchange capacity (CEC) and pH.126

Two subsets of sites can be distinguished among the set of 143 sites. 95127

sampled sites were located in the bare soil fields. Both soil properties mea-128

surements and hyperspectral data suitable for estimation of soil properties129

were available for these 95 sites (Figure 1 left). The remaining 48 sites had130

soil content measurements but unsuitable hyperspectral data because they131

were located in vineyard fields covered by vegetation. Both subsets were132

sampled for obtaining an even spatial distribution of sites while respecting133

the relative importance of the soil mapping units delineated by Coulouma et134

al (2008). It must be noted that the criteria of selection of the two subsets of135

sites (bare soil vs vegetated fields) was totally independent from the spatial136

distribution of soils, which therefore did not generate any sampling bias.137
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2.2.2. Soil map138

The soil map was derived from a very detailed soil map of the study139

area (Coulouma et al, 2008) by an expert-based grouping of the initial soil140

units into seven soilscapes as homogeneous as possible regarding the topsoil141

properties focused in this study. These soilscapes were described in details142

in Gomez et al. (2012a). The grouping into soilscapes was necessary for143

obtaining soil mapping units that included a number of sites large enough144

for applying the tested geostatistical procedures.145

2.2.3. Airborne HYMAP image and its derivative146

The HYMAP airborne imaging spectrometer measured reflected radiance147

in 126 non-contiguous bands covering the 400 – 2500 nm spectral range with148

around 19 nm bandwidths and average sampling intervals of 17 nm in the149

400 – 2500 nm domain (http://www.intspec.com/). The HYMAP image150

was acquired on 13 July 2003 from a 3000 m altitude, providing a 5 x 5 m151

spatial resolution. Radiometric calibration was performed inflight (Richter,152

1996) using nadir ground measurements (Beisl, 2001). The ATCOR4 code153

for airborne sensors was used for atmospheric corrections (Richter and Schl154

äpfer, 2000). Topographic corrections were performed with a high-resolution155

digital elevation model from the Institut Géographique National (www.ign.fr)156

and DGPS ground control points.157

The image was masked by using NDVI to remove living vegetation (es-158

sentially vineyards). The cellulose absorption band (2010 nm) was used to159

remove dry vegetation. Small areas of bare soils located at the parcel margins160

or along roads and pathway were also removed since they were not judged as161

representative of the neighbouring soil surfaces. Finally, the image provided162

usable data over 33 690 pixels covering 3.5% of the total area only, that is163

the 192 bare soil fields that were randomly scattered over the region at the164

date of measurement.165

3. Methods166

3.1. Experimental set-up167

We present hereafter the general workflow of our testing (Figure 2). The168

details on methods are presented further.169

The new algorithm combining the three possible types of soil informa-170

tion (CKCED) was compared with five non spatial and spatial methods171

that involved less types of soil information (Figure 2). Ordinary Kriging172

5
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(OK) and Partial-Least-square-Regression (PLSR) were applied for provid-173

ing estimations of soil properties (denoted products in figure 2) from the174

spatial sampling of measured sites and from hyperspectral data respectively.175

Soil Map and spatial sampling of measured sites were combined twice, first176

by a baseline method that consists in computing a mean per soil mapping177

units (SMM), second by a more sophisticated Kriging with Categorical Drift178

(KCED, Monestiez et al, 2001). Finally the product derived from Hyperspec-179

tral (PLSR on figure 2) was combined with the spatial sampling of measured180

sites using a previously developed co-kriging procedure (CK, Lagacherie et181

al, 2012)182

3.2. Non spatial methods183

Two non spatial methods were applied, namely ’soil mapping unit mean’184

(SMM) and Partial least Square Regression (PLSR). The former is a trivial185

method for combining a soil map and a spatial sampling of measured sites.186

The latter is a well-known regression technique that is widely used in imaging187

spectrometry (Ben-Dor et al, 2008). We provide a brief description of this188

method and its application on our case study hereafter. More details can be189

found in Gomez et al, (2012a).190

Partial Least Square Regression (PLSR)(Tenenhaus, 1998) is a regres-191

sion method that allows the management of 1) co-linearity between the re-192

flectance values at different wavelengths and 2) a number of predictors (here193

wavelengths) that is larger than the number of samples used for calibration194

(here measured sites). The principle of PLSR is to project the variables in an195

area of reduced size defined by a set of orthogonal vectors, called latent vari-196

ables, that maximize the covariance between the descriptive variables (here197

the reflectance values at different wavelengths) and the dependent variables198

(here the soil properties).199

PLSR was applied to estimate the seven topsoil properties from the 126200

reflectance bands provided by the Hymap image for all pixels covered with201

hyperspectral data. The PLSRs were calibrated using data from the above-202

evoked 95 sites located in the bare soil fields and then applied to the bare soil203

pixels for estimating the soil properties, including the 95 pixels with measured204

sites. At this stage the spatial dependences between locations were ignored.205

It must be also noted that this approach can only be applied for bare soil206

fields with collocated hyperspectral data.207

6
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3.3. Spatial methods208

The spatial method applied in this study was a bivariate Cokriging with209

categorical external drift (CKCED). It combines data of soil properties mea-210

sured on sampling sites (primary variable), hyperspectral data from soil211

data predicted from hyperspectral imagery with PLSR (the secondary vari-212

able) and the soilscapes map (categorical external drift known everywhere).213

CKCED was compared with other spatial methods that only use one -Ordinary214

Kriging (OK)- or two - Kriging with a Categorical External Drift (KCED),215

cokriging (CK)- inputs. CKCED, KCED and CK are presented hereafter.216

3.3.1. Variographic analyses217

For each soil property, a linear co-regionalization model (Wackernagel218

1995) was built for the pair "measured value of soil property" and "PLSR219

HYMAP estimated value of soil property". A difficulty was to take into220

account the huge difference between the number of these two data. So the221

cross-variograms were calculated and fitted on the set of 95 bare-soil field sites222

at which the two variables were available. The two direct semi-variograms223

were first modelled as linear combinations of two graphically selected basic224

structures (spherical 300 m and spherical 2300 m) that were found suitable225

for all the properties. The same basic structures were then fitted to the226

cross-semi-variograms under the positive semi-definite constraint(Goovaerts,227

1997). The fits were checked on simple variograms computed on full hymap228

dataset (see Figure 3).229

3.3.2. Neighbourhood selection230

To limit the size of the cokriging system and its unbalanced block struc-231

ture (33690 vs 95), it was necessary to sample the hymap sites in a neighbour-232

hood of the kriged site x0. To preserve short and longer range effects, and233

due to patchy structure of hymap data, a trial-and-error approach produced234

the following trade off: all hymap sites were kept within a distance of 50 m235

from x0 (grid lag = 5 m), one over four within a distance of 500 m (grid lag236

= 10 m) and finally, one over sixteen within a distance of 1500 m (grid lag =237

20m). The resulting number of selected neighbours was in most case lower238

than one thousand and at least greater than two hundred. Considering soil239

sample sites (95), all sites were kept for cokriging in a unique neighbourhood240

mode (see Figure 4).241
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3.3.3. Statistical modelling for kriging242

The variable of interest, i.e. one of the above soil properties, is modelled243

by a random function Z(x) where x denotes the location index (vector of244

coordinates). Z(x) is decomposed into a deterministic unknown drift m(x)245

and a stationary zero-mean random function ZR(x) assumed to be Gaussian246

distributed. In the kriging with external drift approach, m(x) is modelled as247

a linear function of a deterministic external variable. In the kriging with cate-248

gorical external drift (KCED) proposed by Monestiez et al. (1999; 2001) and249

used here, m(x) is modelled as a set of values ek, k = 1, . . . , p, correspond-250

ing to the five soilscape classes (p = 5). The values ek may be unknown,251

but the spatial partition of the domain in soilscape classes must be known252

everywhere. The model can be written as253

Z(x) =

p
∑

k=1

1{k}(x) ek + ZR(x) (1)

where ek is a mean effect for class k to be estimated and 1{k}(x) is the254

indicator function of the class k: it is equal to one if x is in class k, and it255

is equal to zero otherwise. The variable Z was sampled at ni sites xi, for256

i = 1, . . . , ni. (ni = 95). The second variable Y (x), i.e. the covariate of the257

bivariate cokriging, denoted further CK, which is here the predicted property258

by PLSR, is modelled on the same way.259

Y (x) =

p
∑

k=1

1{k}(x) ek + YR(x) (2)

By construction of the PLSR estimates, the mean ek is the same for Y260

and Z. The variable Y was sampled at nj sites xj, for j = 1, . . . , nj and261

where nj is the number of neighbours selected among the 33690 HYMAP262

pixels.263

To simplify notation in the following, the covariance function of Z for a264

pair of points CZZ(xi − xi′) is noted C
(ZZ)

i,i′ and the cross-covariance between265

Z and Y , CZY (xi − xj) is noted C
(ZY)

i,j .266

Covariances and cross-covariances are directly derived from fitted vari-267

ograms and co-variograms. Similarly, Z(xi) and Y (xj) are respectively noted268

Zi and Yj.269
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3.3.4. Kriging with external drift270

Following Monestiez et al. (1999), the KCED predictor is given by :271

Z∗(x0) =

ni
∑

i=1

λi Zi (3)

where the λi’s solve the following kriging system with ni+ p equations to272

ensure unbiasedness and minimisation of the MSE:273























ni
∑

i′=1

λi′C
(ZZ)

i,i′ −

p
∑

k=1

µk1{k}(xi) = C
(ZZ)

i,0 for i = 1, . . . , ni

ni
∑

i=1

λi1{k}(xi) = 1{k}(x0) for k = 1, . . . , p

(4)

3.3.5. Cokriging274

The cokriging CK275

Z∗(x0) =

ni
∑

i=1

λi Zi +

nj
∑

j=1

λ′j Yj, (5)

where the λi’s and λ′j’s solve the following cokriging system with ni+nj+2276

equations to ensure unbiasedness and minimisation of the MSE:277















































ni
∑

i′=1

λi′C
(ZZ)

i,i′ +

nj
∑

j=1

λ′jC
(ZY)

i,j −

p
∑

k=1

µk = C
(ZZ)

i,0 for i = 1, . . . , ni

nj
∑

j′=1

λ′j′C
(YY)

j,j′ +

ni
∑

i=1

λiC
(ZY)

i,j −

p
∑

k=1

µk = C
(ZY)

j,0 for j = 1, . . . , nj

ni
∑

i=1

λi = 1 and

nj
∑

j=1

λ′j = 0

(6)

3.3.6. Cokriging with categorical external drift278

The cokriging with categorical external drift (CKCED) predictor is for-279

mally the same as an Universal Cokriging, and the has the same Z∗(x0)280

9
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expression where the λi’s and λ′j’s solve the following cokriging system with281

ni + nj + p equations to ensure unbiasedness and minimisation of the MSE:282















































ni
∑

i′=1

λi′C
(ZZ)

i,i′ +

nj
∑

j=1

λ′jC
(ZY)

i,j −

p
∑

k=1

µk1{k}(xi) = C
(ZZ)

i,0 for i = 1, . . . , ni

nj
∑

j′=1

λ′j′C
(YY)

j,j′ +

ni
∑

i=1

λiC
(ZY)

i,j −

p
∑

k=1

µk1{k}(xj) = C
(ZY)

j,0 for j = 1, . . . , nj

ni
∑

i=1

λi1{k}(xi) +

nj
∑

j=1

λ′j1{k}(xj) = 1{k}(x0) for k = 1, . . . , p

(7)

Compared to the previous bivariate cokriging system, the constraints on283

λ’s and λ′’s are summed up considering Z and Y have same theoritical mean284

ek for each class k. To get a kriging prediction free from class effects ek, p285

constraints are necessary so that the sum of weights for the class to whom x0286

belongs must be one, and the sum of weights in all other classes must be 0.287

As a consequence, the unit sum on all λ’s :
∑ni

i=1
λi+

∑nj

j=1
λ′j = 1 is directly288

obtained by summing the p constraints.289

There are p Lagrange parameters µ1 to µp. Only one term µ, the one290

corresponding to the class at x0, remains in the kriging variance whose ex-291

pression is :292

σ2

K(x0) = C
(ZZ)

0,0 −

ni
∑

i=1

λiC
(ZZ)

i,0 −

nj
∑

j=1

λ′jC
(ZY)

j,0 +

p
∑

k=1

µk1{k}(x0). (8)

3.4. Validation293

To assess the performance of spatial predictions, a leave-one-out cross294

validation R2

CV was calculated. Two distinct data configurations were con-295

sidered for the comparisons of these methods, whether the predicted site was296

located in a bare soil field with collocated hyperspectral data or not. In the297

available data set of measured sites, these two configurations corresponded298

to 95 and 48 sites respectively. Because the aim of this paper was to compare299

DSM models that used different combinations of input data it was however300

preferable to validate each model with the same dataset. Furthermore, be-301

cause of the low number of the latter, the specific locations of the sites could302

have hampered the comparisons between methods and data configurations.303
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which would have made comparisons less effective. Therefore we tested the304

methods in the two data configurations from the same set of 95 sites. For305

these sites we obtained the absence of collocated hyperspectral data by re-306

moving all hymap data of the bare soil plot to whom belongs the prediction307

point. We however kept the whole set of sites (143) for testing the Ordinary308

kriging.309

4. Results310

4.1. Co-regionalization models311

The fitted models are composed of two spherical models for ranges of312

300 m and 2300 m. The sills for both models were estimated for simple313

variograms and crossed variograms, as described in the table ??.314

As shown by the examples of fitted variograms for three representative315

soil properties (Figure 3) acceptable fits were obtained. As expected, smaller316

sills were obtained from PLSR HYMAP data than from measured values, the317

former being unable to capture the whole soil variability. Table ?? exhibited318

also contrasted 300 m sill / 2300 m sill ratio across soil properties. The319

largest ones, i.e. the largest proportions of "local" variability, were observed320

for CaCO3 and Iron whereas textural properties and CEC had the smallest321

ones. pH represented an intermediate situation.322

4.2. Performance of estimation techniques323

Table 2 shows the performances of the six estimation techniques using324

various number of soil inputs, for the seven soil properties of interest and for325

two data configurations, namely collocated HYMAP data vs no collocated326

HYMAP data but with hymap data in the neighbourhood. All the results327

are expressed in R2 calculated by cross-validation over the subset of 95 sites328

for which all the estimation techniques can be tested (see section ??).329

Spatial estimation techniques that combined soil inputs (KCED, CK or330

CKCED) generally outperformed estimation techniques using a single in-331

put (OK, PLSR) or non-spatial combination of measured sites with a soil332

map (SMM). However, in the case of collocated hymap data, the improve-333

ment was only moderate for iron, which had already good performances with334

PLSR. Moreover, in the case of no collocated hymap data, combining mea-335

sured sites and hymap outputs (CK) even produced a decrease in prediction336

performances for Clay and CEC.337
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Combining measured sites with either the soil map (KCED) or the hymap338

data (CK) had contrasted interests across soil properties and data configura-339

tions. In the case of collocated hymap data, CK clearly outperformed KCED340

whatever the soil properties, with however greater differences for soil prop-341

erties having already good results with the Hymap data alone (PLSR). In342

the case of no collocated hymap data, KCED and CK gave similar results343

for most of the soil properties (iron, silt, sand and pH). However KCED344

outperformed CK for CEC and Clay whereas CK outperformed KCED for345

CaCO3. It must be noted that neither the individual performances of the346

added inputs (PLSR and SMM, table ??) nor the spatial structures of the347

soil properties (table ??) could explain these differences.348

The newly developed estimation technique that combined the three soil349

inputs (CKCED) provided an improvement for only three properties (Iron,350

silt and sand) in the case of no-collocated hymap data. In all other cases,351

the performances of CKCED was similar to those of CK. Here again, it was352

not possible to relate the differences of results across soil properties with the353

individual performances of the added inputs and the spatial structures of the354

soil properties.355

4.3. Mapping356

Figure 4 shows images of clay, sand and iron obtained from the cokriging357

with categorical external drift (CKCED) interpolation . The image of clay358

showed a global increase of clay content from the north to the south of the359

area. This is probably the effect of the parent materials, the old (Pliocene)360

fluvial deposits located in the southern part of the area, being more clayey361

than any other parent materials. The image of sand showed the converse362

spatial distribution, apart from the south West of the study area where soils363

formed on limestone out crops had both low clay and low sand contents. The364

Iron image exhibited a significantly different soil pattern from the previous365

ones with two distinct iron-rich areas that corresponded to soil formed on366

Wurm (North) and Pliocene (south) fluviatile deposits. This last image was367

also the one in which the delineations of the soil map were the most visible.368

5. Discussion369

5.1. Case study representativeness370

Bivariate cokriging and the other interpolation techniques were tested371

in a Mediterranean area that has been used as a case study for digital soil372

12



V
er

si
on

 p
re

pr
in

t

Comment citer ce document :
Walker, E., Monestiez, P., Gomez, C., Lagacherie, P. (2017). Combining measured sites,

soilscapes map and soil sensing for mapping soil properties of a region. Geoderma, 300, 64-73.  DOI :
10.1016/j.geoderma.2016.12.011

mapping and remote sensing for a long time (e.g. Leenhardt et al, 1994373

; Lagacherie and Voltz, 2000, Lagacherie et al, 2008, Gomez et al, 2012).374

In spite of its moderate size, it includes a great variety of parent materials375

and landscape positions that yield complex patterns of soil variations. This376

was confirmed by the study of variograms of seven soil properties that all377

exhibited bi-scaled spatial structures and contrasted ratio of short and large-378

scale variations with properties.379

In this study, seven soil properties were considered. This allowed ob-380

serving contrasted situations with regard to the quality of the auxiliary spa-381

tial data used as input of the interpolation techniques. The proportion of382

variances captured by the hyperspectral-based estimations of soil properties383

ranged between R2 = 0.20 for sand to R2 = 0.78 for iron, which corresponds384

to the range of performances shown in the literature (e.g. Selige et al., 2006;385

Gomez et al., 2008; Ben-Dor et al, 2008, Stevens et al., 2010). As already386

observed by Ben Dor et al (2002),the soil properties that corresponded to387

a chromophore (here Clay, Iron, CEC and Calcium Carbonate) were pre-388

dicted with more accuracy than the other soil properties (sand, silt and pH).389

The range of proportions of variances captured by the soil map was smaller390

(R2 < 0.31). From the soilmap assessments performed in the same pedolog-391

ical area (Lennhardt et al, 1994; Vaysse and Lagacherie, 2015), this results392

correspond to a medium to short scale soil map, that cover substancial pro-393

portions of land, e.g. 39% in Europe (King and Montanarella, 2012) and394

11% in Africa (Nachtergaele and van Ranst, 2002).395

In conclusion, the case study can be considered as matching well the396

level of availability and quality of DSM soil inputs that can be currently397

encountered nowadays. However, many regions in the world may include398

hyperspectral data that cover a larger proportion of the study area and more399

accurate soil maps. For these regions, better and more contrasted results400

than those presented in this paper could certainly be expected.401

5.2. Interest of hyperspectral products as DSM soil input402

Up to now, the use in DSM of hyperspectral products that may provide403

soil property estimations at both high resolutions and large extents has been404

rarely experimented (Schwangart and Jammer, 2011, Lagacherie et al, 2012,405

Gomez et al, 2012b,), and have never been compared with the more common406

use of a soil map as a DSM input combined with measured sites (Mc Bratney407

et al, 2003, Kempen et al, 2011[1]).408
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The results we obtained showed that hyperspectral products used as an409

auxiliary input in cokriging generally provided better improvements of soil410

property predictions than a soil map used as an auxiliary input in Krig-411

ing with a Categorical external Drift. The only exceptions were for Clay and412

CEC in locations with no collocated hyperspectral data, for which the combi-413

nations with the hyperspectral products surprisingly decreased the precisions414

obtained by simply interpolating the measured sites by Ordinary Kriging.415

However, the seemingly greater interest of hyperspectral products must416

be nuanced since we did not have in this case study examples of very well-417

predicted soil properties by a soil map ( R2 < 0.31). Furthermore, one may418

remember that hyperspectral products can only deliver estimations of surface419

soil properties because the effective penetration depths of optical sensors do420

not exceed several millimetres (Liang, 1997[2]), which limits, at best (i.e.421

cultivated areas), the soil property predictions to the topsoil horizons only.422

5.3. Interest of combining three DSM soil inputs423

We proposed a cokriging with a categorical external drift that allowed424

combining the two available auxiliary variables - the soil map and the hyper-425

spectral estimations of soil properties- with the set of measured sites. This426

new interpolation technique was found interesting in situations with no collo-427

cated hyperspectral-based estimations and for a limited number of properties428

(Table 2). These properties were characterized either by the worst perfor-429

mances of the soilscapes map (silt and sand) or by the best performances430

of the hyperspectral based predictions (iron). It must be noted that the431

amount of local variation of the soil properties (table 1) that was expected432

to decrease the interest of using non-collocated hyperspectral-based soil esti-433

mations as auxiliary variable did not explain any difference in performances434

between soil properties. Here again, we did not explore enough variability435

of soil map precisions and distances to neighbouring hyperspectral situations436

for identifying clearly the area of interest of CKCED.437

5.4. Future work438

The performances of the interpolation techniques tested in this paper439

could be improved either by better auxiliary spatial variables or by better440

spatial models.441

Concerning the former, two ways could be explored. A better accuracy of442

the soil map can be obtained by increasing its spatial resolution for obtaining443

a more detailed soil map. However the number of sampled sites can become444
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a limiting factor since KCED requires a good estimate of the mean value445

of the property within each soil mapping units, which cannot be obtained446

without a denser spatial sampling of sites than the one used in this study.447

Beside, since we observed that much better results were obtained within the448

bare soil area where hyperspectral estimates of soil property were available449

without interpolation, it would be worth extending this area. This can be450

straightforwardly done by a better selection of the date of the fly (Gomez et451

al, 2012b). Furthermore, the remaining vegetated area can be processed with452

spectral unmixing (Bartholomeus et al, 2010) or source separation algorithms453

(Ouerghemmi et al, 2016) for filtering the vegetation signal that may perturb454

the estimations of soil properties. Finally, other soil sensing techniques than455

hyperspectral imagery can be used as soil input to enlarge both the area and456

the exploration depth of the targeted soil properties.457

The spatial models underlying the interpolations could be improved first458

by taking into account additional soil covariables like e.g. Digital Eleva-459

tion Model and its derivatives e.g. slope, aspect, curvature, that have been460

largely used in Digital Soil Mapping (McBratney et al, 2003). Another way461

of improvement is to take into account the non stationarity of soil prop-462

erty variations by applying interpolations based on local (Sun, 2012) and/or463

anisotropic spatial models (Schwangart and Jammer, 2011).464

6. Conclusion465

This study tested the use of the three possible soil inputs for DSM models466

– spatial set of measured sites, soil map and soil sensing products. A new467

spatial interpolation technique – cokriging with a categorical external drift –468

was developed for combining these three inputs. The results obtained in the469

La Peyne Catchment demonstrated the utility of auxiliary variables such as470

soil map or hyperspectral imagery products for predicting soil properties and471

the greater added-value of the latter against the former in most situations.472

The combination of soilmap and hyperspectral–based estimations of soil473

property allowed by the novel cokriging with categorical external drift pro-474

cedure (CKCED) brought improvements for a limited number of soil proper-475

ties and data configurations. However, to better evaluate its utility, this new476

combination needs to be tested in other case study with soil maps of better477

quality and soil sensing techniques covering more area and depths.478
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Table 1: Fitted sill and range parameters of direct (samples and hymap) and cross vari-
ograms. *in g2/kg2 for clay, CaCO3, Iron, Sand and Silt; no unit for pH; Meq2/100g2 for
CEC
Soil property range (m) samples sill* crossed sill* Hymap sill*

Clay 300 3578 1886 1600
2300 1387 1691 2062

CaCO3 300 7522 4819 4658
2300 13412 12871 12352

CEC 300 6.94 4.59 4.51
2300 1.79 1.56 2.03

Iron 300 0.169 0.129 0.141
2300 0.314 0.274 0.245

pH 300 0.338 0.028 0.023
2300 0.366 0.178 0.096

Sand 300 11146 1516 1270
2300 3715 2969 2373

Silt 300 7910 1586 1081
2300 249 504 1021

1

Table

Click here to download Table: tables.pdf
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Table 2: Performances (cross validation R2) of the different methods for two data con-
figurations: with collocated hymap data (Config. 1) and with no collocated hymap data
but with hymap data in the neighbourhood (Config. 2). OK: Ordinary Kriging, PLSR:
Partial least square Regression, SMM : mean per Soil mapping unit, KCED: Kriging with
categorical external drift, CKCED: Cokriging with categorical external drift. *insensitive
to data configuration (results are repeated for enabling comparisons). ** "-" means "not
feasible with this data configuration"

Number of soil input one two three

OK* PLSR SMM* KCED* CK CKCED
Config. 1

Iron 0.45 0.78 0.31 0.48 0.80 0.79

CaCO3 0.45 0.76 0.20 0.46 0.84 0.84

CEC 0.30 0.62 0.23 0.36 0.71 0.71

Clay 0.29 0.67 0.26 0.35 0.71 0.70

Silt 0.26 0.17 0.07 0.30 0.37 0.37

Sand 0.12 0.20 0.02 0.18 0.35 0.35

pH 0.20 0.31 0.16 0.26 0.37 0.36

Config. 2

Iron 0.45 - ** 0.31 0.48 0.46 0.49

CaCO3 0.45 - 0.20 0.46 0.55 0.55

CEC 0.30 - 0.23 0.36 0.08 0.10
Clay 0.29 - 0.26 0.35 0.12 0.14
Silt 0.26 - 0.07 0.30 0.29 0.34

Sand 0.12 - 0.02 0.18 0.17 0.19

pH 0.20 - 0.16 0.26 0.26 0.26
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Figure 1

Click here to download high resolution image
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Figure 4

Click here to download high resolution image
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